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Section A (Multiple Choice Questions) 

Unit I:  

1. Which of the following has range (1, ∞)? 

(a) log 𝑥 on (0, ∞) (b) 
1

𝑋
 on  (0, ∞) (c) 𝑒𝑥  on (0, ∞)   (d) 𝑒−𝑥  on (0, ∞)  

2. Which of the following is not a closed set? 

(a)  𝑥 ∈ ℝ: 1 ≤ 𝑥 ≤ 10     (b) ℕ ∪ {0}  (c)  
𝑛

𝑛+1
∶ 𝑛 ∈ ℕ  (d)  𝑚 +

1

𝑛
∶ 𝑚, 𝑛 ∈ ℕ  

3. The function 𝑓 𝑥 =  
𝑆𝑖𝑛  𝑥

𝑥
, (𝑥 ∈  𝑅′ , 𝑥 ≠ 0) is _____________. 

(a) defined at 𝑥 = 0                  (b) continuous at 𝑥 = 0 

(c) not continuous at 𝑥 = 0      (d) lim𝑛→∞
sin 𝑥

𝑥
 does not exist 

4. In a metric space M, a subset E is closed if 

(a) 𝐸 ≠ 𝐸   (b) 𝐸 = 𝐸   (c) 𝐸 ⊂ 𝐸   (d) 𝐸 ≠ 𝜙 

5. Every subset of —————— is open. 

(a) 𝑅  (b) [0,1] (c) (0,1)  (d) 𝑅𝑑  

Unit II:  

6. What is the diameter of the set {(x, y): x + y = 1}? 

(a)  2 (b) 2 (c) 1  (d) ∞ 

7. Which of the following set in 𝑅2 is open? 

(a) {(x, y)/ x + y =1}  (b) {(x, y)/ x and y are rational} 

(c) {(x, y)/ x + y >1}  (d) {(x, y)/ x2 + y2 =1} 

8. If 𝑀 =  0,1  with 𝑑 𝑥, 𝑦 = |𝑥 − 𝑦| then 𝐵(0,
1

2
 )  

(a) (0,
1

2
)   (b) [0,

1

2
 )  (c) [0,

1

2
]  (d) [0,1] 

9. If   𝐴1 and 𝐴2  are connected, then 𝐴1 ∪  𝐴2 is connected is  

(a) 𝐴1 ∩  𝐴2 ≠ 𝜙 (b) 𝐴1 ∩  𝐴2 = 𝜙 (c) 𝐴1 ∪  𝐴2 ≠ 𝜙 (d) 𝐴1 ∪  𝐴2 = 𝜙 

10.  If A is not bounded, then dim A ——————. 

(a) 1  (b) 2  (c) ∞  (d) −∞ 

Unit III: 

11. If  f  is continuous on [a,b], then f  ________________ at [a,b]. 

(a) attains maximum and minimum         (b) attains maximum but not minimum 
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(c) attains minimum but not maximum    (d) attains neither maximum nor minimum 

12. Which of the following is a compact set in R? 

(a)  (0,1)  (b) (0,1]  (c) (0, ∞)  (d) [0,1] 

13. The metric space < 𝑀, 𝜌 ) is compact if it is complete and  ___________ 

(a) continuous (b) open (c) totally-bounded  (d) connected 

14. Which of the following is uniformly continuous? 

(a)  𝑓 𝑥 =  𝑥2 , 𝑓:  0,1 → 𝑅   (b) 𝑓:  0,1 → 𝑅 , 𝑓 𝑥 =  
1

𝑥
   

(b) (c) 𝑓: 𝑅 → 𝑅, 𝑓 𝑥 =  𝑥2  (d) (c) 𝑓: 𝑅 → 𝑅, 𝑓 𝑥 =  𝑥3 

15. What is the set  [ 
−1

𝑛
 ,

1

𝑛
 ]∞

𝑛=1  ? 

(a) {0}  (b) (−1,1) (c) [−1,1] (d) ( −∞, ∞) 

Unit IV:  

16. Measure of  𝑥1, 𝑥2, . . . . , 𝑥𝑛   in R is —————— 

(a) 1   (b) 0  (c) 0  (d) ∞ 

17. The set of all rational numbers is of measure ________________. 

(a) 3  (b) 2  (c) 1  (d) 0 

18. 𝑀[𝑓: 𝑔] is defined by 

(a) 𝑙. 𝑢. 𝑏𝑥∈𝑔  𝑓(𝑥) (b) 𝑙. 𝑢. 𝑏𝑥∈𝑔  𝑓 ′ (𝑥) (c) 𝑔. 𝑙. 𝑏𝑥∈𝑔  𝑓(𝑥) (d) 𝑔. 𝑙. 𝑏𝑥∈𝑔  𝑓 ′ (𝑥) 

19. What is the measure of a finite set A ? 

(a) The cardinality |A| of A (b) 0 (c) 2𝑘  , 𝑤𝑒𝑟𝑒 𝑘 = |𝐴|  (d) None of these 

20. What is the value of 𝑈[𝑓, 𝜎] where 𝑓 𝑥 = 𝑥 in [0,1] and 𝜎 = { 0, 1
3  , 2

3  , 1} 

(a) 2 3   (b) 1 3   (c) 1  (d) 0 

Unit V:  

21. If 𝑓 ′ 𝑥 = 𝑔′ 𝑥 , ∀ 𝑥 ∈ [0,1] then ___________  = 𝑐, 𝑐 ∈ 𝑅.  

(a) 𝑓(𝑥)  (b) 𝑓 𝑥 − 𝑔(𝑥) (c) 𝑓 𝑥 + 𝑔 𝑥    (d) 𝑔(𝑥) 

22. lim𝑥→𝑐
𝑓𝑛−1 𝑥 − 𝑓𝑛−1(𝑐)

𝑥−𝑐
= 

(a) 𝑓𝑛−1(𝑐)             (b) 𝑓𝑛(𝑐)  (c) 𝑓𝑛(𝑥)  (d) 𝑓𝑛−1(𝑥) 

23. The derivative of 𝑓 𝑥 = sin(𝑥2) in ℝ is 

(a) cos  (𝑥2 )  (b) ) 2x cos  (𝑥2 ) (c) sin 2𝑥 ` (d) 2x sin  (𝑥2 ) 

24. Let 𝑓 𝑥 = 𝑥 and 𝑔 𝑥 = 𝑥2 on [a,b]. What is the value of c  for which 
𝑓 𝑏 −𝑓(𝑎)

𝑔 𝑏 −𝑔(𝑎)
=  

𝑓 ′ (𝑐)

𝑔 ′ (𝑐)
 

(a) 1  (b) 0  (c) 1 2   (d) 1 3  

25. 𝑓 𝑥 =   
𝑥          𝑥 𝑖𝑠 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙

sin 𝑥     𝑥 𝑖𝑠 𝑖𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙
   then 𝑓 ′ 0 =  

(a) −1  (b) 0 (c) 1  (d) > 1 

 



      SAIVA BHANU KSHATRIYA COLLEGE 
(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu) 

     ARUPPUKOTTAI 

DEPARTMENT OF MATHEMATICS      

QUESTION BANK 
 

 

 

Section B (7 mark Questions)  

Unit I:  

26. Prove that the composition of two continuous functions is again a continuous function. 

27. If 𝐺1 and 𝐺2 are open subsets of a metric space M, then prove that 𝐺1 ∩  𝐺2 is also a open 

set. 

28. Prove that x  is a limit point of a set E  in a metric space M if and only if for every open 

ball 𝐵(𝑥; 𝑟) about x  contains at least one point of  E. 

29. Define open and closed sets in a metric space. Give examples to each. 

30. Prove that the set 𝑅′  is of second category. 

Unit II:  

31. Prove that a subset  A of 𝑅′  is connected ⟺ whenever 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴, 𝑎 ≤ 𝑏 then 𝑐 ∈

𝐴, for any c  such that 𝑎 < 𝑐 < 𝑏. 

32. Prove that 𝑙2 is complete. 

33. Prove that every totally bounded subset of a metric space is bounded. 

34. Let A  be a subset of ℝ with the property that whenever 𝑎, 𝑏 ∈ 𝐴,  𝑎. 𝑏 ⊆ 𝐴, then prove 

that A is connected. 

35. If < 𝑀, 𝜌 > is a complete metric space and A  is a closed subset of M, then prove that 

< 𝐴, 𝜌 > is also complete. 

Unit III:  

36. If M is a compact metric space, then prove that M  has Heine-Borel property. 

37. Prove that the continuous image of a compact metric space is compact. 

38. If every sequence of points in a metric space M has subsequence converging to a point in 

M, then show that M is compact. 

39. Prove that a real valued continuous function f  on a compact metric space M attains its 

maximum value at some point of the domain M. 

40. Prove that any compact set in a metric space is closed. 

Unit IV:  

41. If f  is a continuous function on [a,b] and 𝜎 and 𝜏 are two subdivisions of [a,b], then 

prove that 𝑈 𝑓, 𝜎 ≥ 𝐿 𝑓, 𝜏 . 

42. If f  is a bounded function on the closed bounded interval [a,b], then prove that 𝑓 ∈

ℛ 𝑎, 𝑏   ⟺ for each 𝜖 > 0, ∃ 𝜎, a subdivision of [a,b] such that  𝑈 𝑓; 𝜎 < 𝐿 𝑓: 𝜎 + 𝜀. 

43. If 𝑓 ∈ ℛ 𝑎, 𝑏  and  𝜆 is any real number, then show that 𝜆𝑓 ∈ ℛ 𝑎, 𝑏  and also show that 

∫ 𝜆𝑓
𝑏

𝑎
=  𝜆 ∫ 𝑓

𝑏

𝑎
. 

44. If 𝑓 ∈ ℛ 𝑎, 𝑏 , then prove that |𝑓| ∈ ℛ 𝑎, 𝑏  and  ∫ 𝑓
𝑏

𝑎
  ≤  ∫  𝑓 

𝑏

𝑎
.  
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45. If 𝑓 ∈ ℛ 𝑎, 𝑏 , 𝑔 ∈ ℛ 𝑎, 𝑏  and if   𝑓 𝑥 ≤ 𝑔 𝑥 , almost everywhere  𝑎 ≤ 𝑥 ≤ 𝑏 , then 

prove that ∫ 𝑓
𝑏

𝑎
 ≤  ∫ 𝑔.

𝑏

𝑎
  

 

Unit V:  

46. Prove that  𝑓𝑔 ′ 𝑐 = 𝑓 ′ 𝑐 𝑔 𝑐 + 𝑓 𝑐 𝑔′(𝑐) 

47. State and prove law of mean 

48. State and prove Rolle’s theorem. 

49. Let f  be a 1-1 real valued function on an interval J and let 𝜙 be the inverse function for f. 

If  f  is continuous at 𝑐 ∈ 𝐽 and if 𝜙 has derivative at 𝑑 = 𝑓(𝑐) with 𝜙′ 𝑑 ≠ 0, prove 

that f  is differentiable at c and 𝑓 ′ 𝑐 =  
1

𝜙 ′  𝑑 
 . 

50. If f  has a derivative at every point of [a,b], then prove that 𝑓′ takes on every value 

between 𝑓′(𝑎) and 𝑓 ′ 𝑏 . 

 

Section C (10 mark Questions)  

Unit I:  

51. Let 𝑀1 and 𝑀2 be two metric spaces. Prove the necessary and sufficient condition for a 

function f  on 𝑀1 to be continuous is that the inverse image 𝑓−1(𝑉) of every open set V  

in 𝑀2 is open in 𝑀1. 

52. If f  and  g  are continuous functions at 𝑎 ∈ 𝑀, metric space, then prove that 𝑓𝑔  and 

𝑓 + 𝑔  are continuous at 𝑎. 

Unit II:  

53. State and prove Picard  fixed point theorem. 

54. Prove that ℝ𝑛  is complete. 

Unit III:  

55. The metric space M  is compact if and only if whenever ℱ is a family of closed subsets of 

M with finite intersection property, then  𝐹𝐹∈ℱ ≠ 𝜙. 

56. Prove that the continuous function defined on a compact metric space is uniformly 

continuous. 

Unit IV:  

57. If f  is a bounded function on [a,b], then prove that 𝑓 ∈ ℛ 𝑎, 𝑏 ⇔ 𝑓 is continuous at 

almost every point in [a,b]. 

58. If 𝑓, 𝑔 ∈ ℛ 𝑎, 𝑏 , then prove that If 𝑓 + 𝑔 ∈ ℛ 𝑎, 𝑏  and ∫ 𝑓 + 𝑔
𝑏

𝑎
=  ∫ 𝑓

𝑏

𝑎
+  ∫ 𝑔

𝑏

𝑎
. 

Unit V:  

59. State and prove fundamental theorem of calculus. 

60. State and prove second fundamental theorem of calculus. 
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