SAIVA BHANU KSHATRIYA COLLEGE
(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)
ARUPPUKOTTAI
DEPARTMENT OF MATHEMATICS
QUESTION BANK

Name of the Department :	B.Sc., MATHEMATICS		
Semester (UG - III \& V; PG - III) :	V	Subject Code :	SMTJC52
Name of the Subject :	REAL ANALYSIS		

Section A (Multiple Choice Questions)

Unit I:

1. Which of the following has range $(1, \infty)$?
(a) $\log x$ on $(0, \infty)$
(b) $\frac{1}{X}$ on $(0, \infty)$
(c) e^{x} on $(0, \infty)$
(d) e^{-x} on $(0, \infty)$
2. Which of the following is not a closed set?
(a) $\{x \in \mathbb{R}: 1 \leq x \leq 10\}$
(b) $\mathbb{N} \cup\{0\}$
(c) $\left\{\frac{n}{n+1}: n \in \mathbb{N}\right\}$
(d) $\left\{m+\frac{1}{n}: m, n \in \mathbb{N}\right\}$
3. The function $f(x)=\frac{\sin x}{x},\left(x \in R^{\prime}, x \neq 0\right)$ is \qquad -.
(a) defined at $x=0$
(b) continuous at $x=0$
(c) not continuous at $x=0$
(d) $\lim _{n \rightarrow \infty} \frac{\sin x}{x}$ does not exist
4. In a metric space M, a subset E is closed if
(a) $E \neq \bar{E}$
(b) $E=\bar{E}$
(c) $E \subset \bar{E}$
(d) $E \neq \phi$
5. Every subset of -_ is open.
(a) R
(b) $[0,1]$
(c) $(0,1)$
(d) R_{d}

Unit II:

6. What is the diameter of the set $\{(x, y): x+y=1\}$?
(a) $\sqrt{2}$
(b) 2
(c) 1
(d) ∞
7. Which of the following set in R^{2} is open?
(a) $\{(x, y) / x+y=1\}$
(b) $\{(x, y) / x$ and y are rational $\}$
(c) $\{(x, y) / x+y>1\}$
(d) $\{(x, y) / x 2+y 2=1\}$
8. If $M=[0,1]$ with $d(x, y)=|x-y|$ then $B\left(0, \frac{1}{2}\right)$
(a) $\left(0, \frac{1}{2}\right)$
(b) $\left[0, \frac{1}{2}\right.$)
(c) $\left[0, \frac{1}{2}\right]$
(d) $[0,1]$
9. If A_{1} and A_{2} are connected, then $A_{1} \cup A_{2}$ is connected is
(a) $A_{1} \cap A_{2} \neq \phi$
(b) $A_{1} \cap A_{2}=\phi$
(c) $A_{1} \cup A_{2} \neq \phi$
(d) $A_{1} \cup A_{2}=\phi$
10. If A is not bounded, then $\operatorname{dim} A$
(a) 1
(b) 2
(c) ∞
(d) $-\infty$

Unit III:

11. If f is continuous on $[\mathrm{a}, \mathrm{b}]$, then f \qquad at $[a, b]$.
(a) attains maximum and minimum
(b) attains maximum but not minimum

SAIVA BHANU KSHATRIYA COLLEGE
(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)
ARUPPUKOTTAI
DEPARTMENT OF MATHEMATICS
QUESTION BANK
(c) attains minimum but not maximum (d) attains neither maximum nor minimum
12. Which of the following is a compact set in R ?
(a) $(0,1)$
(b) $(0,1]$
(c) $(0, \infty)$
(d) $[0,1]$
13. The metric space $<M, \rho$) is compact if it is complete and \qquad
(a) continuous (b) open
(c) totally-bounded
(d) connected
14. Which of the following is uniformly continuous?
(a) $\left\{f(x)=x^{2}, f:[0,1] \rightarrow R\right\}$
(b) $f:(0,1) \rightarrow R, f(x)=\frac{1}{x}$
(b) (c) $f: R \rightarrow R, f(x)=x^{2}$
(d) (c) $f: R \rightarrow R, f(x)=x^{3}$
15. What is the set $\bigcap_{n=1}^{\infty}\left[\frac{-1}{n}, \frac{1}{n}\right]$?
(a) $\{0\}$
(b) $(-1,1)$
(c) $[-1,1]$
(d) $(-\infty, \infty)$

Unit IV:

16. Measure of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ in R is \qquad
(a) 1
(b) 0
(c) 0
(d) ∞
17. The set of all rational numbers is of measure \qquad .
(a) 3
(b) 2
(c) 1
(d) 0
18. $M[f: g]$ is defined by
(a) l.u. $b_{x \in g} f(x)$
(b) l.u. $b_{x \in g} f^{\prime}(x)$
(c) g.l. $b_{x \in g} f(x)$
(d) g.l. $b_{x \in g} f^{\prime}(x)$
19. What is the measure of a finite set A ?
(a) The cardinality $|A|$ of A
(b) 0
(c) 2^{k}, where $k=|A|$
(d) None of these
20. What is the value of $U[f, \sigma]$ where $f(x)=x$ in $[0,1]$ and $\sigma=\{0,1 / 3,2 / 3,1\}$
(a) $2 / 3$
(b) $1 / 3$
(c) 1
(d) 0

Unit V :

21. If $f^{\prime}(x)=g^{\prime}(x), \forall x \in[0,1]$ then \qquad $=c, c \in R$.
(a) $f(x)$
(b) $f(x)-g(x)$
(c) $f(x)+g(x)$
(d) $g(x)$
22. $\lim _{x \rightarrow c} \frac{f^{n-1}(x)-f^{n-1}(c)}{x-c}=$
(a) $f^{n-1}(c)$
(b) $f^{n}(c)$
(c) $f^{n}(x)$
(d) $f^{n-1}(x)$
23. The derivative of $f(x)=\sin \left(x^{2}\right)$ in \mathbb{R} is
(a) $\cos \left(x^{2}\right)$
(b)) $2 \mathrm{x} \cos \left(x^{2}\right)$
(c) $\sin 2 x$
(d) $2 x \sin \left(x^{2}\right)$
24. Let $f(x)=x$ and $g(x)=x^{2}$ on $[\mathrm{a}, \mathrm{b}]$. What is the value of c for which $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}$
(a) 1
(b) 0
(c) $1 / 2$
(d) $1 / 3$
25. $f(x)=\left\{\begin{array}{cc}x & x \text { is rational } \\ \sin x & x \text { is irrational }\end{array}\right.$ then $f^{\prime}(0)=$
(a) -1
(b) 0
(c) 1
(d) >1

SAIVA BHANU KSHATRIYA COLLEGE
(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)
ARUPPUKOTTAI
DEPARTMENT OF MATHEMATICS QUESTION BANK

Section B (7 mark Questions)

Unit I:

26. Prove that the composition of two continuous functions is again a continuous function.
27. If G_{1} and G_{2} are open subsets of a metric space M , then prove that $G_{1} \cap G_{2}$ is also a open set.
28. Prove that x is a limit point of a set E in a metric space M if and only if for every open ball $B(x ; r)$ about x contains at least one point of E.
29. Define open and closed sets in a metric space. Give examples to each.
30. Prove that the set R^{\prime} is of second category.

Unit II:

31. Prove that a subset A of R^{\prime} is connected \Leftrightarrow whenever $a \in A, b \in A, a \leq b$ then $c \in$ A, for any c such that $a<c<b$.
32. Prove that l^{2} is complete.
33. Prove that every totally bounded subset of a metric space is bounded.
34. Let A be a subset of \mathbb{R} with the property that whenever $a, b \in A,(a . b) \subseteq A$, then prove that A is connected.
35. If $\langle M, \rho\rangle$ is a complete metric space and A is a closed subset of M, then prove that $<A, \rho>$ is also complete.

Unit III:

36. If M is a compact metric space, then prove that M has Heine-Borel property.
37. Prove that the continuous image of a compact metric space is compact.
38. If every sequence of points in a metric space M has subsequence converging to a point in M, then show that M is compact.
39. Prove that a real valued continuous function f on a compact metric space M attains its maximum value at some point of the domain M.
40. Prove that any compact set in a metric space is closed.

Unit IV:

41. If f is a continuous function on $[\mathrm{a}, \mathrm{b}]$ and σ and τ are two subdivisions of $[\mathrm{a}, \mathrm{b}]$, then prove that $U[f, \sigma] \geq L[f, \tau]$.
42. If f is a bounded function on the closed bounded interval [a,b], then prove that $f \in$ $\mathcal{R}[a, b] \Leftrightarrow$ for each $\epsilon>0, \exists \sigma$, a subdivision of $[\mathrm{a}, \mathrm{b}]$ such that $U[f ; \sigma]<L[f: \sigma]+\varepsilon$.
43. If $f \in \mathcal{R}[a, b]$ and λ is any real number, then show that $\lambda f \in \mathcal{R}[a, b]$ and also show that $\int_{a}^{b} \lambda f=\lambda \int_{a}^{b} f$.
44. If $f \in \mathcal{R}[a, b]$, then prove that $|f| \in \mathcal{R}[a, b]$ and $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f|$.

SAIVA BHANU KSHATRIYA COLLEGE
 (Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)
 ARUPPUKOTTAI
 DEPARTMENT OF MATHEMATICS
 QUESTION BANK

45. If $f \in \mathcal{R}[a, b], g \in \mathcal{R}[a, b]$ and if $f(x) \leq g(x)$, almost everywhere ($a \leq x \leq b$), then prove that $\int_{a}^{b} f \leq \int_{a}^{b} g$.

Unit V :

46. Prove that $(f g)^{\prime}(c)=f^{\prime}(c) g(c)+f(c) g^{\prime}(c)$
47. State and prove law of mean
48. State and prove Rolle's theorem.
49. Let f be a 1-1 real valued function on an interval J and let ϕ be the inverse function for f. If f is continuous at $c \in J$ and if ϕ has derivative at $d=f(c)$ with $\phi^{\prime}(d) \neq 0$, prove that f is differentiable at c and $f^{\prime}(c)=\frac{1}{\phi^{\prime}(d)}$.
50. If f has a derivative at every point of $[\mathrm{a}, \mathrm{b}]$, then prove that f^{\prime} takes on every value between $f^{\prime}(a)$ and $f^{\prime}(b)$.

Section C (10 mark Questions)

Unit I:

51. Let M_{1} and M_{2} be two metric spaces. Prove the necessary and sufficient condition for a function f on M_{1} to be continuous is that the inverse image $f^{-1}(V)$ of every open set V in M_{2} is open in M_{1}.
52. If f and g are continuous functions at $a \in M$, metric space, then prove that $f g$ and $f+g$ are continuous at a.

Unit II:

53. State and prove Picard fixed point theorem.

54 . Prove that \mathbb{R}^{n} is complete.

Unit III:

55. The metric space M is compact if and only if whenever \mathcal{F} is a family of closed subsets of M with finite intersection property, then $\bigcap_{F \in \mathcal{F}} F \neq \phi$.
56. Prove that the continuous function defined on a compact metric space is uniformly continuous.

Unit IV:

57. If f is a bounded function on $[\mathrm{a}, \mathrm{b}]$, then prove that $f \in \mathcal{R}[a, b] \Leftrightarrow f$ is continuous at almost every point in $[\mathrm{a}, \mathrm{b}]$.
58. If $f, g \in \mathcal{R}[a, b]$, then prove that If $f+g \in \mathcal{R}[a, b]$ and $\int_{a}^{b} f+g=\int_{a}^{b} f+\int_{a}^{b} g$.

Unit V :
59. State and prove fundamental theorem of calculus.
60. State and prove second fundamental theorem of calculus.

SAIVA BHANU KSHATRIYA COLLEGE

(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)
ARUPPUKOTTAI
DEPARTMENT OF MATHEMATICS QUESTION BANK

