

(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)

ARUPPUKOTTAI QUESTION BANK

Name of the Department :	MATHEMATICS	UG / PG :	UG		
Semester (UG - III & V; PG - III) :	UG – V	Subject Code :	SMTJC54		
Name of the Subject :	OPERATIONS RESEARCH				

Section A (Multiple Choice Questions)

Unit I: LINEAR PROGRAMMING PROBLEM 1. Operation Research was coined by a) M. Closky b) Church man c) Hungarian d) Kimball
2. Since $x \ge 0$, $y \ge 0$ the solution set is restricted to the quadrant.a) firstb) secondc) thirdd) fourth
3. If the constraints of an LPP has in equations of type.a) only \geq b) only \leq c) \leq and \geq d) \leq or \geq or =
4. All the decision variables area) positive b) negative c) non positive d) 0
5. In Simplex method the pivotal element is alwaysa) Positive b) Negative c) One d) Zero
Unit II: TWO-PHASE AND DUALITY 6. The number of dual variables of max $Z = x_1 + x_2 - x_3$, subject to $x_1 + x_3 \le 5$, $5 x_1 + x_2 \le 8$, $3 x_1 + 2 x_2 \le 7$; $x_1, x_2, x_3 \ge 0$ is a) 1 b) 2 c) 3 d) 4
7. The dual of the dual isa) primal b) Two Phase c) may be primal d) none
8. A linear function $z = \sum cjxi$ attains its optimum solution at a) origin b) boundary c) Vertices d) axes
 9. A feasible region is a) maximum value b) minimum value c) solution space d) solutions
 10. To convert minimization problem into maximization we use a) max Z = - min(-Z) b) max Z = min(-Z) c) max Z = - min(Z) d) max Z = max(-Z)
Unit III: TP and AP 11. When the total demand is equal to total supply, the TP is said to be a) Minimization b) Maximization c) Unbalanced d) balanced

(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)

ARUPPUKOTTAI

QUESTION BANK

12	2. In an assign	ment problem	the optimum t	able reached is	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Then assign	ment B is	_		D 0 5 1 0
	a) 1	b) 2	c) 3	d) 4	
1	3. Which metho a) NWC	od is the best in b) MODI	itial basic feasib c) MMM	le solution? d) VAM	
1	4. If an AP is a) $m = n$	balanced, then b) m > n	 c) m < n	d) m \neq n	
1	5. How many a) m-n-1	numbers of oc b) m-n+1	cupied cells in c) m+n-1	the TP? d) m-n	
Un 1	it IV: GAME 6. The value o	THEORY f the game wh	ose pays-off	6 -3 -3 0	matrix is
	a) 6	b) -3/4	c) 0	d) -3	
1′	7. A competitiv a) competit	ve situation is ion b) g	known as ame c) n	 narketing d) no	one.
13	8. Games whic a) 2- person	h involve mor n b) n- persor	e than two play	yers are called ng d) negotiable	games.
19	9. The saddle p	point of the fol	lowing	5 4 game 3 2	is
	a) 5 b) 4	4 c) 2 c	l)none		
20	0. The size of t a) Game in	he pay-off ma version b) g	trix of a game ame transpose	can be reduced b c) dominanc	by using the principle of e d) logic
Unit 2	V: SEQUENC	CING AND R i jobs to be per	EPLACEME	NT t a time, on each	of m machines, the possible
	a) n!	b) $(n!)^{m}$	$c) n^m$	d) m ⁿ	

- 22. In a sequencing problem, if smallest time for a job belongs to machine 1, then the job has
 - to be placed in the _____ of the sequence. a) Middle b) starting c) end d) none

time to process all jobs through two machines is given by $\sum{j=1}^{n} M_{2j} + \sum_{j=1}^{n} I_{2j}$ 23. _____ b) Total elapsed c) processing d) idle a) Elapsed

(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)

ARUPPUKOTTAI

QUESTION BANK

- 24. Which is not a replacement______ in machine. a) failure b) break down c) good condition d)decreased efficiency
- 25. The problem of replacement is felt when job performing units fall_____.a) Suddenlyb) Graduallyc) a or bd) none

Section B (7 mark Questions)

Unit I: LINEAR PROGRAMMING PROBLEM

- 26. Write a algorithm of Mathematical formulation of Linear Programming Problem.
- 27. Define Slack and Surplus Variables.
- 28. A manufactures produces two types models A and B. Each A model requires 4 hours of grinding, 2 hours of polishing and 1 hours of packing. Also B model requires 3 hours of grinding, 4 hours of polishing and 1 hours of packing. They manufacture has 2 grinders, 3 polishers and 1 packing machine. Each grinder works for 40 hours, each polisher works for 60 hours and each packing machine works for 24 hours in a week. Profit are Rs 3 and Rs 4. Formulate the Mathematical form of LPP.
- 29. Solve graphically method Min Z = $x_1 + 1.5x_2$ Subject to the constraints: $-2 x_1 + x_2 \le 1, x_1 + x_2 \le 3, x_1 \le 2$ $x_1, x_2 \ge 0.$
- 30. Use Simplex method to solve the following LPP. Max Z = 2 $x_1 + 4 x_2$ Subject to the constraints: $x_1 + 2 x_2 \le 5$, $x_1 + x_2 \le 4$ $x_1, x_2 \ge 0$.

Unit II: TWO-PHASE AND DUALITY

- 31. Write the dual of max $Z = 2 x_1 + x_2$, Subject to the constraints: $x_1 + 2 x_2 \le 10, x_1 + x_2 \le 6, x_1 - x_2 \le 2, x_1 - 2 x_2 \le 1$ $x_1, x_2 \ge 0$.
- 32. Obtain the dual of the following LPP. min Z = $x_1 - 3x_2 - 2 x_3$, Subject to the constraints: $3 x_1 - x_2 + 2 x_3 \le 7, 2 x_1 - 4 x_2 \ge 12 - 4 x_1 + 3 x_2 + 8 x_3 = 10, x_1 - 2 x_2 \le 1$. $x_1, x_2 \ge 0$ and x3 is unrestricted.
- 33. Write an algorithm of Dual Simplex Method.

(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)

ARUPPUKOTTAI QUESTION BANK

34. Obtain the Dual Simplex of the following LPP. min Z = $x_1 - 3 x_2$ Subject to the constraints: $3 x_1 - x_2 \le 7, 2 x_1 - 4 x_2 \ge 12, -4 x_1 + 3 x_2 \le 10$ $x_1, x_2 \ge 0.$

35. Solve the LPP using Two- Phase method. Min $Z = x_1 + x_2$ Subject to the constraints: $2 x_1 + x_2 \le 1, x_1 + x_2 \le 3.$ $x_1, x_2 \ge 0.$

Unit III: TP AND AP

- 36. Write the algorithm of NWC and Least cost Method.
- 37. Write the algorithm of MODI method.
- 38. Obtain an initial basic feasible solution to the following TP using the North West corner rule.

*	D	E	F	G	Av.
А	11	13	17	14	250
В	16	18	14	10	300
С	21	24	13	10	400
Re.	200	225	275	250	950

39. Solve the AP

*	1	2	3	4
А	0	0	7	1
В	8	3	0	3
С	11	1	0	0
D	0	5	1	1

40. Solve the assignment problem.

160	130	175	190
135	120	130	160
140	110	125	170
50	50	80	80

Unit IV: GAME THEORY

41. Solve the

(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)

ARUPPUKOTTAI QUESTION BANK

42. Solve the 2X3

6	5	2	game:
1	3	11	

- 43. Solve the game using graphical method. $\begin{bmatrix} 2 & -4 & 6 \\ -3 & 4 & -4 \end{bmatrix}$
- 44. Explain the dominance rules in the game theory.
- 45. Solve the game whose pay-off matrix is given below: $\begin{bmatrix} -3 & 4 & 2 \\ 7 & 8 & 5 \\ 6 & 2 & 9 \end{bmatrix}$

Unit V: SEQUENCING AND REPLACEMENT

46. Solve the sequencing the problem.

Job	А	В	С	D	Е	F
1	3	12	18	9	15	6
2	9	18	24	24	3	15

47. Solve the sequencing the problem and find idle time.

Book	1	2	3	4	5	6
Machine A	30	120	50	20	90	110
Machine B	80	100	90	60	30	10

48. Find the sequence that minimizes the total elapsed time required to complete the following job.

Job	1	2	3	4	5	6
Machine A	5	7	2	6	1	4
Machine B	2	5	4	9	1	3

49. The cost of a machine is Rs.6100 and scrap value is Rs. 100. The maintenance cost found from the experience as follows:

Year	1	2	3	4	5	6	7	8
Maintenance (B a)	100	250	400	600	900	1200	1600	2000
(KS.)								

When should the machine be replaced?

50. Explain the replacement problem.

Section C (10 mark Questions)

Unit I: LINEAR PROGRAMMING PROBLEM

SAIVA BHANU KSHATRIYA COLLEGE (Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)

ARUPPUKOTTAI

QUESTION BANK

51. Solve graphical method: Max Z = $5x_1 + 3x_2$ Subject to the constraints: $x_1 + x_2 \le 6, 2 x_1 + 3 x_2 \ge 6, 0 \le x_1 \le 4, 0 \le x_2 \le 3$ $x_1, x_2 \ge 0.$

52. Solve the LPP using Simplex method: Max Z = 4 x₁ + 10 x₂ Subject to the constraints: 2 x₁ + x₂ \leq 50, 2 x₁ + 5 x₂ \leq 100, 2 x₁ + 3 x₂ \leq 90 x₁, x₂ \geq 0.

Unit II: TWO-PHASE AND DUALITY

- 53. Obtain the dual of the following LPP. min $Z = x_1 3 x_2 2 x_3$, Subject to the constraints: $3 x_1 - x_2 + 2 x_3 \le 7$, $2 x_1 - 4 x_2 \ge 12$, $-4 x_1 + 3 x_2 + 8 x_3 = 10$, $x_1 - 2 x_2 \le 1 x_1$, $x_2 \ge 0$ and x_3 is unrestricted.
- 54. Write an algorithm of Two-Phase Method.

Unit III: TP AND AP

55. Find the starting solution in the following TP by Vogel's Approximation method. Also obtain the optimum solution.

*	D	Е	F	G	supply
А	3	7	6	4	3
В	2	4	3	2	2
С	4	3	8	5	3
demand	3	3	2	2	

56. Solve the AP.

*	1	2	3	4
А	23	20	21	24
В	19	21	20	20
С	20	18	24	22
D	22	18	21	23

ARUPPUKOTTAI QUESTION BANK

Unit IV: GAME THEORY

57. Solve the game:

Players B

Players A
$$\begin{bmatrix} -2 & 5\\ -5 & 3\\ 0 & -2\\ -3 & 0\\ 1 & 4 \end{bmatrix}$$

58. Solve the game:
(10 - 8 - 11)

$$\begin{pmatrix} 10 & 8 & -11 & -2 \\ 14 & 6 & -5 & 5 \\ 9 & 7 & 5 & -4 \\ 15 & 4 & -3 & 3 \end{pmatrix}$$

Unit V: SEQUENCING AND REPLACEMENT

59. Solve the sequencing the problem.

Job	А	В	С	D	Е	F	G
1	3	8	7	4	9	8	7
2	4	3	2	5	1	4	3
3	6	7	5	11	5	6	12

60. Explain the various assumptions involved in solving a sequencing problem.