

(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)

ARUPPUKOTTAI

DEPARTMENT OF MATHEMATICS QUESTION BANK

Class :	B.Sc., MATHEMATICS					
Semester (UG - III & V; PG - III) :	Semester V Subje		ct Code :	SMTJC51	[
Name of the Subject :	MODERN ALGEBRA					
	- 1					
Section A (Multiple Choice Question	<u>s)</u>					
Unit I						
1. Which of the following is not a g	group?					
(a) $(Z, +)$ (b) $(R, -)$	+)	(c) (N	(c) (N, +)		(d) (Q, +)	
2. $(Z_{12}, \oplus), <3>=$						
(a) $\{0, 3, 6, 9\}$ (b) $\{0\}$		(c) Z ₁₂	(c) Z ₁₂		(d) $\{0, 3, 9\}$	
3. Order of a non-zero element in ($\mathbb Z$, +) is					
(a) ∞ (b) 0		(c) 1	(c) 1		(d) 2	
4. The Statement $(ab^2) = a^2b^2$, $\forall a$,	b∈G is tr	ue if				
(a) G is abelian (b	o) G is nor	n-abelian	(c) G is any	y group	(d) G is fini	te
5. Number of elements in $S_n =$						
(a) n (b) 2n		(c) 2r	ı!	(d) n!		
Unit II						
6. Let $H = \{0, 4\}$ be a subgroup of	$G = (Z_8, \epsilon)$	Ð). Then [G H] =			
(a) 3 (t	o) 4	-, .	(c) 2		(d)	1
$7.0(Z_6/<3>)$ is	 、 _					2
(a) 6 (t	5) 5	C 1	(c) 4		(d)	3
8. A group of order 24 cannot have	a group of	t order			(1) -	
(a) 3 (b) 2		(c) 8	\$		(d) 5	
9. The Index of $\{0, 4\}$ in (\mathbb{Z}_8, \oplus) i	IS					
(a) 0 (t	o) 4		(c) 8		(d)	2
10. Let H be a subgroup of group C	G. Let R de	note numb	er of right	Cosets of H	in G, and L	
denote number of left Cosets of H i	n G. Then					
(a) $R < L$ (b) $L < R$	L	(c) R =	= L	(d) R =	≠ L	

(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)

ARUPPUKOTTAI

DEPARTMENT OF MATHEMATICS QUESTION BANK

Unit III

11. Let $f: G \to G'$ be	e an isomorphism. If G i	s abelian then $G^{ }$ is -	
(a) abelian	(b) not abelian	(c) need not be a	belian (d) none of
these			
12. The number of a	atomorphisms of acyclic	group of order n is-	
(a) P (n)	(b) n	(c) n - 1	(d) Ø (n)
13. The Kernel of th	e map f: $(\mathbb{Z}, +) \rightarrow (\mathbb{R}^*)$	(\cdot, \cdot) is given by $f(x) =$	$= 3^{x}$ is
(a) 1	(b) 0	(c) 3	(d) none of these
14. f : (\mathbb{Z} , +) \rightarrow (\mathbb{C}^*	, ·) is given by $f(n) = i^n i$	is	
(a) one-one	(b) onto	(c) homomorph	nism (d) isomorphism
15. Any infinite cycl	ic group is isomorphic to	0	
(a) $(Z_{n,} \oplus)$	(b) (Z, X)	(c) (Z, +)	(d) (R, +)
Unit IV			
16. If	, then Z_n is a field.		
(a) $n = 4$	(b) $n = 6$	(c) $n = 8$	(d) n is prime
17. Characteristic of	ring Z _n is		
(a) n + 1	(b) n - 1	(c) n	(d) n+2
18. ($\rho(s)$, Δ , n) is a			
(a) Commutative	e ring(b) Boolean ring	(c) commutative rin	g with identity (d) All of
these.			
19. The characteristic	c of any field is		
(a) 0	(b) prime	(c) 0 (c	or) Prime (d) Neither 0
nor Prime			
20. The characteristic	c of any Boolean ring is		
(a) 0	(b) 2	(c) 1	(d) ∞

(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)

ARUPPUKOTTAI

DEPARTMENT OF MATHEMATICS QUESTION BANK

Unit V

21. Let I be an ideal of I	R with $1 \in I$. Then		
(a) $I = \emptyset$	(b) $I \neq R$	(c) $I = R$	(d) None
22. If,	(n) is a maximal idea	al in Z.	
(a) $n = 4$	(b) $n = 6$	(c) $n = 8$	(d) n is prime
23. The only ideals of a	field F are		
(a) {0}	(b) F	(c) $\{0\}$ or F	(d) {0} & F
24. {0} is a	ideal of Z.		
(a) prime	(b) maximal (c) p	orime but not maximal	(d) maximal but not
prime			
25. The maximal ideal of	of Z is		
(a) (0)	(b) (6)	(c) (4)	(d)
(2)			

Section B (7 mark Questions)

Unit I

- 26. Prove that any permutation can be expressed as a product of disjoint cycles.
- 27. Prove that the union of two subgroups of a group is again a subgroup if one is contained in the other.
- 28. Let G be a group in which every elements is of finite order. Whether the group G is finite? Identify.
- 29. Prove that a subgroup of a cyclic group is cyclic
- 30. Define abelian group. Prove that $(\rho(s), \Delta)$ is an abelian group.

Unit II

- 31. Define Coset. State and prove Euler's theorem.
- 32. Prove that every group of prime order is cyclic.
- 33. Prove that the quotient group G / N is a group.
- 34. Define normal subgroup. Prove that a subgroup N of G is normal ⇔ the product of two right cosets of N is again a right coset of N.

(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)

ARUPPUKOTTAI DEPARTMENT OF MATHEMATICS QUESTION BANK

35. Show that if H and N are subgroups of a group G and N is normal in G, then $H \cap N$ is normal in H. Show by an example that $H \cap N$ need not be normal in G.

Unit III

36. Show that (\mathbb{R}^*, \cdot) is not isomorphic to $(\mathbb{R}^*, +)$.

37. Define isomorphism of a group. Let $G = \{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \}$ and $f: G \to \mathbb{R}^*$,

$$f\begin{pmatrix} a & 0\\ 0 & 0 \end{pmatrix} = a$$
. Then $G \cong \mathbb{R}^*$. Prove this.

- 38. Prove that the number of automorphisms of a cyclic group of order n is \emptyset (N)
- 39. If G is a group and H is the Centre of G, then show that $G / H \simeq I(G)$
- 40. Let $f: G \to G'$ be a homomorphism. Then prove that f is $1 1 \Leftrightarrow \ker f = \{e\}$.

Unit IV

- 41. Prove that the characteristics of an integral domain is either 0 or a prime number.
- 42. Construct the Cayley table for the ring ($\rho(s)$, Δ , n) where S = {1, 2}
- 43. Prove that a finite commutative ring R without zero divisors is a field.
- 44. Prove: A non-empty subset S of a ring R is a sub ring \Leftrightarrow a b \in S & a b \in S \forall a, b \in S.
- 45. Prove that any finite integral domain is a field.

Unit V

- 46. Let R be a commutative ring with identity. Then prove that R is a field \Leftrightarrow R has no proper ideals.
- 47. Let R be any commutative ring with identity. Let P be an ideal of R. Then prove that P is a prime ideal $\Leftrightarrow \frac{R}{p}$ is an integral domain.
- 48. Define Maximal ideal. Let p be any prime. Then prove that (p) is maximal ideal in Z.
- 49. If F' is any field containing the integral domain D, then prove that F' contains a subfield which is isomorphic to a field F.
- 50. Let R and R' be ring and $f: R \rightarrow R'$ be a homomorphism. If S is an ideal of R, then prove that f(S) is an ideal of f(R).

Section C (10 mark Questions)

Unit I

51. Let A and B be two subgroups of a group G.

(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)

ARUPPUKOTTAI DEPARTMENT OF MATHEMATICS QUESTION BANK

Then prove that AB is a subgroup of $G \Leftrightarrow AB = BA$

52. (a). Prove that (Z_8 , \oplus) is cyclic and find all its generators.

(b) If $\alpha = (1 \ 2 \ 3 \ 4)$, $\beta = (1 \ 3) \ (1 \ 4)$, then find $\alpha\beta$, $\beta\alpha$, α^{-1} , β^{-1} , $\alpha^{-1}\beta^{-1}$.

Unit II

- 53. State and prove Lagrange's theorem on groups.
- 54. Let N be subset of G. Then prove that the following are equivalent.
 - (a). N is a normal subgroup of G.
 - (b). $\alpha \ N \ \alpha^{-1} = N$, for all $\alpha \in G$
 - (c). $\alpha N \alpha^{-1} \subseteq N$, for all $\alpha \in G$
 - (d). $\alpha n \alpha^{-1} \in \mathbb{N}$, for all $n \in \mathbb{G}$

Unit III:

55. State and prove Cayley's theorem.

56. State and prove the fundamental theorem of homomorphism in groups.

Unit IV

- 57. Prove that every finite integral domain is a field.
- 58. Prove that \mathbb{Z}_n is an integral domain iff n is prime.

Unit V

- 59. Prove that any integral domain can be embedded in a field
- 60. Let R be a commutative ring with identity. An ideal M of R is maximal iff $\frac{R}{M}$ is a field.