SAIVA BHANU KSHATRIYA COLLEGE

(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)

ARUPPUKOTTAI

DEPARTMENT OF MATHEMATICS QUESTION BANK

Class:	B.Sc., Mathematics		
Semester (UG - III & V; PG - III) :	UG – V	Subject Code :	SMTJA51
Name of the Subject :	Graph Theory		

Section A (Multiple Choice Questions)

Unit I:

Unit I:								
1.	A connected (<i>p</i> , <i>q</i>) graph contains a cycle iff							
	(a) $q < p$	(b) $q \neq p$	(c) $q \ge p$	(d) none				
2.	A graph is said to be k-regular if degree of every vertex is							
	(a) $k + 1$	(b) <i>k</i>		(d) $k + 2$				
3.	The number of odd degree vertices in a graph G is							
	(a) odd		(c) both odd & even	(d) none				
4.	Empty graph is also known as							
			(c) Bipartite graph					
5.	÷		walk is known as					
	(a) open	(b) path	(c) closed	(d) none				
Unit II	•							
	A Hamilton cycle has	x						
0.			(c) all edges	(d) some edges				
7		o vertex of		(u) some edges				
7.	(a) even		(c) prime	(d)composite				
8	An Eulerian trail has		(c) prime	(u)composite				
0.			(c) all edges	(d) some edges				
9.	 (a) all vertices (b) some vertices (c) all edges (d) some edges (d) some edges (d) some edges 							
	(a) zero		(c) two					
10.	10. Every Hamiltonian graph is							
			(c) 2-connected	(d) minimally connected				
Unit II								
11.	Every tree has							
			(c) 1 or 2 centers	(d) 1 and 2 centers				
12.		s has edges.		n				
	(a) <i>n</i>	(b) <i>n</i> + 1	(c) $n - 1$	(d) $\frac{n}{2}$				
13.	13. The diagonal entries of an adjacency matrix are							
	(a) 1	(b) 2		(d) none				
14.	14. A (p,q) -graph G is a bipartite graph iff it contains no cycles							
	(a) odd		(c) both odd & even	(d) none				
15.	15. Adjacent edges are called edges							
	(a) dependent	(b) independent	(c) parallel	(d) none				
T I	7•							
10.	K_5 is (a) Planar	(b) Non-Planar	(c) Euler graph	(d) none				
17	17. Euler polyhedron formula is							
1/.								

SAIVA BHANU KSHATRIYA COLLEGE

(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)

ARUPPUKOTTAI

DEPARTMENT OF MATHEMATICS QUESTION BANK

	(a) $V - E + F = 2$	(b) $V + E - F = 2$	(c) $V - E + F - 1$	(d) $V + E - F = 0$			
18. <i>K</i> _{3,3} is							
	(a) Planar	(b) Non-Planar	(c) Euler graph	(d) none			
19.	19. If G is a (p,q) planar graph then $\delta(G)$						
	(a) = 6	(b) = 7	$(c) \leq 5$	$(d) \leq 3$			
20.	20. Every subdivision of a nonplanar graph is						
	(a) planar	(b) nonplanar	(c) polyhedron	(d) regular polyhedron			
Unit V	:						
21. The chromatic number of K_p is							
	(a) 0	•	(c) <i>p</i>	(d) $p - 2$			
22. A digraph is called disconnected if the underlying graph is							
	(a) connected	(b) disconnected	(c) strongly connected	(d) weekly connected			
23. If <i>H</i> is a subgraph of a graph <i>G</i> , then							
	(a) $\chi(G) \leq \chi(H)$	(b) $\chi(G) \geq \chi(H)$	(c) $\chi(G) = \chi(H)$	(d) $\chi(G) > \chi(H)$			
24. If χ is the chromatic number, then $\chi(C_{2n+1}) = $							
	(a) 1		(c) 3	(d) 4			
25.	25. (p,q) digraph refers p vertices and q						
	(a) edges	-	(c) cycles	(d) paths			
			• • •	· · •			

Section B (7 mark Questions)

Unit I:

- 26. State and prove Hand Shaking theorem.
- 27. Prove that the number of odd degree vertices in any graph is always even.
- 28. If $q \ge p$, then prove that (p, q) graph contains a cycle.
- 29. Let *G* be a graph on atleast 6 vertices then prove that *G* and \overline{G} contains a triangle.
- 30. Prove that every nontrivial graph contains at least two vertices which are not cut-vertices.

Unit II:

- 31. State and prove Fleury's algorithm.
- 32. Prove that in a connected graph G, there is an Eulerian trial iff the number of vertices of odd degree is either zero or two.
- 33. If *G* is a Hamiltonian graph and $S \neq \phi$, $S \subseteq V(G)$ then prove that $\omega(G S) \leq |S|$.
- 34. Prove that if G is Eulerian then every point of G has even degree.

35. Prove that G is a graph with $n \ge 3$ and $m \ge \frac{n^2 - 3n + 6}{2}$ then G is Hamilton.

Unit III:

- 36. Prove that a graph G is a tree if and only if every two vertices of G are connected by a unique path.
- 37. State R.C. Prim's algorithm with example.
- 38. Prove that every connected graph G contains a spanning tree.
- 39. Explain J.B. Kruskal's algorithm with example.
- 40. Prove that a connected (p, q)-graph is a tree iff every edge is a cut-edge.

SAIVA BHANU KSHATRIYA COLLEGE

(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)

ARUPPUKOTTAI DEPARTMENT OF MATHEMATICS QUESTION BANK

Unit IV:

- 41. State and prove Euler formula for planar graph.
- 42. Prove that a graph G on p vertices is connected iff $(A + I)^{p-1}$ has no zero entries.
- 43. State and prove Maclane theorem.
- 44. If G is a plane (p, q)-graph with $\delta(G) \ge 3$, then prove there is a face in G of degree ≤ 5 .
- 45. State and prove Wagner theorem.

Unit V:

46. If *G* is a (p,q)-graph, then prove that $\chi(G) \ge \frac{p^2}{p^2 - 2q}$.

- 47. Let G be a graph and let u and v be non-adjacent vertices in G then prove that $\chi(G) = min\{\chi(G + (u, v)), \chi(G. uv)\}.$
- 48. Show that for any graph G, $\chi(G) \leq \Delta(G) + 1$.
- 49. If *G* is a bipartite graph with $q(G) \ge 1$, then prove that $\chi_1(G) = \Delta(G)$.
- 50. Write an algorithm for vertex colouring of a graph.

Section C (10 mark Questions)

Unit I:

- 51. If $q > \frac{p^2}{4}$, then prove that every (p, q)-graph contains a triangle.
- 52. For any Graph *G*, prove that $q(G) \ge p(G) \omega(G)$.

Unit II:

53. Prove that a nontrivial connected graph is Eulerianiff it has no vertex of odd degree.

54. Prove that any trail constructed by Fleury's algorithm is a closed Eulerian trail in G.

Unit III:

55. State and prove Hall's theorem.

56. Prove that a (p,q)-graph G is a bipartite graph iff it contains no odd cycle.

Unit IV:

- 57. Explain there are exactly five regular polyhedral.
- 58. Prove that (i) if *H* is a subgraph of a graph *G*, then $\chi(G) \ge \chi(H)$

(ii) if G is a
$$(p,q)$$
-graph, then $\chi(G) \ge \frac{p^2}{p^2 - 2q}$.

Unit V:

- 59. Prove that for any given integer $k \ge 1$ there exists a triangle free graph with chromatic number k.
- 60. Prove that if G is a graph on p vertices, then

a)
$$2\sqrt{p} \le \chi(G) + \chi(\overline{G}) \le p+1$$
 b) $p \le \chi(G)\chi(\overline{G}) \le \frac{(p+1)^2}{4}$.