

(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)

### ARUPPUKOTTAI

# DEPARTMENT OF MATHEMATICS QUESTION BANK

| t Code : | SMTJC31 |
|----------|---------|
|          |         |
|          |         |

### Section A (Multiple Choice Questions)

### Unit I: (Force acting at a point)

| 1                                                                                               |                                                                                                            | If two forces P and Q act in the same direction then the resultant is equal to                       |                                |                            |                           |  |  |  |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|---------------------------|--|--|--|
|                                                                                                 |                                                                                                            | (a) P+Q                                                                                              |                                |                            |                           |  |  |  |
| 2                                                                                               | 2. Law of parallelogram of forces:                                                                         |                                                                                                      |                                |                            |                           |  |  |  |
|                                                                                                 |                                                                                                            | (a) AB+DA=AC                                                                                         | (b) AB*AD=AC                   | (c) AB-AD=AC               | (d)AB+AD=AC               |  |  |  |
| 3                                                                                               | 3. The result of two equal forces at an angle $\alpha$ is in a direction.                                  |                                                                                                      |                                |                            |                           |  |  |  |
|                                                                                                 |                                                                                                            | (a) 2P cos $\alpha/2$                                                                                | (b) 3P $\cos \alpha$           | (c) 2P $\cos^2 \alpha/2$   | (d)None of the above      |  |  |  |
| 4                                                                                               | 4. If three forces acting at a point are in equilibrium, each forces is proportional to the sine of        |                                                                                                      |                                |                            |                           |  |  |  |
|                                                                                                 |                                                                                                            | between the other two.                                                                               |                                |                            |                           |  |  |  |
| _                                                                                               |                                                                                                            |                                                                                                      | (b) Lemi's theorem             |                            | (d)None of the above      |  |  |  |
| 5                                                                                               |                                                                                                            |                                                                                                      | The resolved part =            |                            | (1) 2                     |  |  |  |
|                                                                                                 |                                                                                                            | (a) 1                                                                                                | (b) F                          | (c) 0                      | (d)2                      |  |  |  |
| Unit II: (Parallel forces and Moments)                                                          |                                                                                                            |                                                                                                      |                                |                            |                           |  |  |  |
| 6. The maximum value of friction is                                                             |                                                                                                            |                                                                                                      |                                |                            |                           |  |  |  |
|                                                                                                 |                                                                                                            | (a) μ /R                                                                                             |                                | (c) R                      | (d) µ                     |  |  |  |
| 7                                                                                               |                                                                                                            | The coefficient of fricti                                                                            |                                |                            |                           |  |  |  |
|                                                                                                 |                                                                                                            | (a) $\tan \lambda$                                                                                   |                                | (c) $\sin \lambda$         | (d) $\cot \lambda$        |  |  |  |
| 8                                                                                               | 5.                                                                                                         | If three forces acting on a rigid body are in equilibrium they must be                               |                                |                            |                           |  |  |  |
|                                                                                                 |                                                                                                            |                                                                                                      | (b) Equal                      | (c) Concurrent             | (d)Zero                   |  |  |  |
| 9                                                                                               | 9. Coefficient of friction is denoted by                                                                   |                                                                                                      |                                |                            |                           |  |  |  |
|                                                                                                 |                                                                                                            | (a) F                                                                                                | (b) µ                          | (c) λ                      | (d)None of the above      |  |  |  |
| 1                                                                                               | 0.                                                                                                         | ). If F is a friction and R is a normal reaction between two bodies when equilibrium is non-limiting |                                |                            |                           |  |  |  |
|                                                                                                 |                                                                                                            | then                                                                                                 | r.                             | <b>F</b>                   | r.                        |  |  |  |
|                                                                                                 |                                                                                                            | (a) $\frac{F}{R} < \mathbf{R}$                                                                       | (b) $\frac{F}{R} > \mathbf{R}$ | $(c)\frac{r}{R}=R$         | $(d)\frac{F}{R} \ge R$    |  |  |  |
| Unit                                                                                            | п                                                                                                          | I: (Projectile)                                                                                      |                                |                            |                           |  |  |  |
| Unit III: (Projectile)<br>11. The time taken to reach the greatest height of a projectile is of |                                                                                                            |                                                                                                      |                                |                            |                           |  |  |  |
| 1                                                                                               | 1.                                                                                                         |                                                                                                      | (b) u sin $\alpha / 2g$        |                            | (d) $u^2 \sin 2\alpha$    |  |  |  |
| 1                                                                                               | 2.                                                                                                         | The horizontal range R                                                                               |                                |                            |                           |  |  |  |
| -                                                                                               |                                                                                                            | (a) $u^2 \sin 2\alpha / g$                                                                           | (b) $u^3 \sin 2\alpha / g$     | (c) $u^4 \sin 2\alpha / g$ | (d) $u^2 \sin \alpha / g$ |  |  |  |
| 1                                                                                               | 13. The is the path which the particle describes.                                                          |                                                                                                      |                                |                            |                           |  |  |  |
|                                                                                                 |                                                                                                            | (a) angle of projection                                                                              | (b) friction                   | (c) trajectory             | (d)none of the above      |  |  |  |
| 1                                                                                               |                                                                                                            |                                                                                                      |                                |                            |                           |  |  |  |
|                                                                                                 | 14. The maximum horizontal range of a projectile is(a) $u^2 / g$ (b) $u^2 / 2g$ (c) $u / g$ (d) $u^2 / 3g$ |                                                                                                      |                                |                            |                           |  |  |  |
| 1                                                                                               | 5.                                                                                                         | 5. The time of flight of a projectile is                                                             |                                |                            |                           |  |  |  |
|                                                                                                 |                                                                                                            | (a) $2u \sin \alpha / g$                                                                             | (b) $u \sin \alpha / g$        | (c) $\sin \alpha / g$      | (d) $3u \sin \alpha / g$  |  |  |  |
|                                                                                                 |                                                                                                            |                                                                                                      |                                |                            |                           |  |  |  |



(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)

#### ARUPPUKOTTAI

# DEPARTMENT OF MATHEMATICS QUESTION BANK

#### **Unit IV: (Impulsive Forces)** 16. The impulse of a force is measured as follows: (a)change in momentum (b)change in velocity (c) change in acceleration (d) None 17. By Newton's principle of impact $v_1 - v_2 =$ \_\_\_\_\_ (c) -e $(u_2 - u_1)$ (d) $(u_2 - u_1)$ (a) $e(u_1 - u_2)$ (b) $e(u_2 - u_1)$ 18. Bodies for which e=1 are said to be \_ (b) perfectly elastic (a) Inelastic (c) Path (d) trajectory 19. If two sphere are perfectly elastic and of equal mass then (a) $e=1 \& m_1 = m_2$ (b) e=1 & $m_1 \neq m_2$ (c) $e \neq 1 \& m_1 = m_2$ (d) $e > 1 \& m_1 = m_2$ 20. For oblique impact when e=1, the loss of kinetic energy is (c) 0(a) 1 (b) 2 (d)3 **Unit V: (Motion under the action of central forces)** 21. Pedal equation of the central orbit (a) $\frac{h^2}{p^3} \frac{dp}{dr}$ (b) $\frac{h^3}{p^3} \frac{dp}{dr}$ (c) $\frac{p^2}{h^3} \frac{dp}{dr}$ 22. The areal velocity of a particle moving in a central orbit is \_\_\_\_\_ $(d)\frac{h^2}{p^3} \frac{dr}{dp}$ $(c)\frac{1}{3}pv$ (d) $\frac{1}{2} p$ (a) $\frac{1}{2} pv$ (b) *pv* 23. Velocity in a central orbit: (a) $\frac{h}{p}$ (b) $\frac{h^2}{p}$ $(d)\frac{h^2}{n^3}$ (c) $\frac{h}{p^2}$ 24. Pedal equation of parabola - pole at focus: \_\_\_\_ (a) p<sup>3</sup>=ar (b) $p=ar^2$ (c) $p^2 = ar$ (d)p=ar 25. The radial component of the velocity in a central orbit is \_\_\_\_\_ $(c)\frac{1}{r}\frac{dr}{dt}$ (a) $\frac{dr}{dt}$ (b) $\frac{d^2r}{dt^2}$ $(d) \frac{1}{r^2} \frac{dr}{dt}$

### Section B (7 mark Questions)

#### Unit I: (Force acting at a point)

- 26. State and prove parallelogram of forces.
- 27. State and prove triangle of forces.
- 28. Two forces act on a particle. Of the sum and difference of the forces are at right angels to each other, show that the forces are of equal magnitude.
- 29. Show that a given force may be resolved into three components, acting in three given lines which are not all parallel or all concurrent.
- 30. ABC is a triangle, with a right angle at A. AD is the perpendicular on BC. Prove that the resultant of the forces  $\frac{1}{AB}$  acting along AB and  $\frac{1}{AC}$  acting along AC is  $\frac{1}{AD}$  acting along AD

#### Unit II: (Parallel forces and Moments )

- 31. If three parallel forces are in equilibrium, each is proportional to the distance between the other two.
- 32. State and prove three coplanar forces theorem.
- 33. State and prove two trigonometrical theorems.
- 34. Explain law of friction.
- 35. Write coefficient of friction.



(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)

# ARUPPUKOTTAI

# DEPARTMENT OF MATHEMATICS QUESTION BANK

#### Unit III: (Projectiles)

- 36. Write a characteristics of the motion oa a projectile.
- 37. Show that the greatest height which a particle with initial velocity v can reach on vertical wall at a distance 'a' from the point of projection is  $\frac{v^2}{2g} \frac{g a^2}{2 v^2}$
- 38. Show that, for a given velocity of a projection the maximum range down and inclined plane of inclination  $\alpha$  bears to the maximum range up the inclined plane ratio 1+ sin  $\alpha$  / 1- sin  $\alpha$
- 39. Find the velocity of the projectile in magnitude and direction at the end of time t.
- 40. If  $v_1$  and  $v_2$  be the velocities of a projectile at the ends of a focal chord of its path and U is the velocity at the vertex. Prove that  $v_1^{-2} + v_2^{-2} = U^{-2}$

#### **Unit IV: (Impulsive Forces)**

- 41. Write loss of kinetic energy in impact.
- 42. Explain fundamental laws of impact.
- 43. A smooth sphere, or particle whose mass is m and whose coefficient of restitution is e, impinges obliquely on a smooth fixed plane; to find the velocity and direction of motion after impact.
- 44. A particle is projected from a point on an inclined plane and at the rth impact it strikes the plane perpendicularly and at the nth impact is at the point of projection. Show that  $e^n 2e^r + 1 = 0$
- 45. Explain the Direct impact of two smooth spheres.

#### **Unit V: (Motion under the action of central forces)**

- 46. Derive the pedal equation of a central orbit.
- 47. Explain the two fold problems in central orbit.
- 48. Derive the pedal equation of (a). Circle pole at any point (b). Parabola pole at focus.
- 49. Derive velocities in a central orbit.
- 50. A particle moves in an ellipse under a force which is always directed towards its focus. Find the law of force, the velocity at any point of the path and its period time.

### Section C (10 mark Questions)

#### Unit I: (Forces acting at a point)

- 51. State and prove Lami's theorem.
- 52. ABC is a given triangle. Forces P,Q,R acting along the lines OA, OB, OC are in equilibrium. Prove that (i) P:Q:R=a<sup>2</sup>(b<sup>2</sup>+c<sup>2</sup>-a<sup>2</sup>):b<sup>2</sup>(c<sup>2</sup>+a<sup>2</sup>-b<sup>2</sup>):c<sup>2</sup>(a<sup>2</sup>+b<sup>2</sup>-c<sup>2</sup>) of O is the circumcenter of the triangle. (ii) P:Q:R=a:b:c if O is the orthocenter of the triangle.

### Unit II: (Parallel forces and Moments)

- 53. State and prove Varigon's theorem.
- 54. A body is at rest on a rough plane inclined to the horizon at an angle greater than the angle of friction and is acted upon by a force, parallel to the plane and along the line of greatest slope; to find the limits between which the force must lie.

### Unit III: (Projectile)

- 55. Show that path of a projectile is a parabola.
- 56. Explain range on a inclined plane.

#### **Unit IV: (Impulsive Forces)**

- 57. Explain loss of kinetic energy due to Direct impact of two smooth spheres.
- 58. Explain Oblique impact of two smooth spheres.



(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)

ARUPPUKOTTAI

# DEPARTMENT OF MATHEMATICS QUESTION BANK

### Unit V: (Motion under the action of central forces)

- 59. Derive the differential equation of a central orbit.
- 60. Find the law of forces towards the pole under which the curve  $r^n = a^n \cos n\theta$