

(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)

ARUPPUKOTTAI DEPARTMENT OF CHEMISTRY QUESTION BANK

Class:		B.Sc., Chemistry		
Semester (UG - III & V; PG - III)	:	V	Subject Code :	SCHJC52
Name of the Subject :		PHYSICAL CHEMISTRY II		

Section A (Multiple Choice Questions)

UNIT I: FIRST LAW OF THERMODYNAMICS AND ITS APPLICATIONS

1.	Which among the following is not an extensive variable?				
	a) mass	b) volume	c) energy	d) temperature	
2.	is an extensive property of a system				
	a) pressure	b) viscosity	c) mass	d) surface tension	
3.	The amount of heat (q) for an adiabatic process is				
	a) infinity	b) zero	c) positive	d) negative	
4.	The Joule-Thomson coefficient for an ideal gas is				
	a) zero	b) positive	c) negative	d) infinity	
5.	. Which among the following is path function?				
	a) internal energy	b) enthalpy	c) work	d) entropy	
UN	UNIT II: SECOND LAW OF THERMODYNAMICS AND ITS APPLICATIONS				
6.	The change of international states of the change of the states of the st	al energy for a cyclic p	rocess is		
	a) positive	b) negative	c) zero	d) none of the above	
7.	The maximum efficie	ency of an engine opera	ating between 110 ⁰ C an	d 25 °C is	
	a) 2.22	b) 0.222	c) 0.0222	d) 22.2	
8.	8. Entropy unit is				
	a) J	b) K	c) JK	d) JK ⁻¹	
9.	9. Which among the is the correct statement for the spontaneous process?				
	a) $\Delta S = 0$, $\Delta G = 0$ and $\Delta A = 0$ b) $\Delta S = +ve$, $\Delta G = -ve$ and $\Delta A = -ve$				
c) $\Delta S = +ve$, $\Delta G = +ve$ and $\Delta A = -ve$ d) $\Delta S = -ve$, $\Delta G = +ve$ and $\Delta A = +ve$					
10. For a total of one mole of a pure substance the free energy is equal to					
	a) Chemical potenti	al b) entropy	c) internal energy	d) enthalpy	
UNIT III: THERMODYNAMICS OF EQUILIBRIUM PROCESSES					

a)	pure liquids	b) pure gases	c) pure solids	d) none of the above

11. The Nernst heat theorem holds good only in the case of _____

(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)

ARUPPUKOTTAI

DEPARTMENT OF CHEMISTRY QUESTION BANK

12.	The Δn for the formation of ammonia is				
	a)	zero	b) positive	c) negative	d) infinity
13.	Which among the following is not a colligative property?				
	a)	osmotic pressure	b) atm	nospheric pressure	
	c) l	owering of vapour p	cessure d) ele	vation of boiling point	
	,		,, , , , , , , , , , , , , , , , ,		
14.	The	e mole fraction of sol	ute in dilute solution	is	
	a)	less than unity	b) equal to unity	c) greater than unity	d) zero
15.	The	e ΔG for an equilibriu	im reaction is		
	a)	+ ve	b) – ve	c) zero	d) infinity
UN	IT I	V: PHASE EQUIL	IBRIA		
16.	The	e Gibbs phase rule is			
	a)	$\mathbf{F} = \mathbf{C} + \mathbf{P} - 2$	b) $F = C + P + 2$	c) $F = C - P + 2$	d) $F = C - P - 2$
17.	The	e degree of freedom (F) at triple point is eq	ual to	
	a)	one	b) two	c) three	d) zero
18.	Wh	nich among the follow	ving is simple eutection	c system?	
	a) Water system b) Sulphur system				
	c) Lead – silver system d) Ferric – chloride system				
19.	The	e reduced Gibbs phas	e rule is		
	a)	F = C + P - 1	b) $F = C + P + 1$	c) $F = C - P + 1$	d) $F = C - P - 1$
20.	The	e number of phases at	t triple point is		
	a)	one	b) two	c) three	d) four
UN	П	V: GROUP THEOP	RY		
21.	Wh	nich among the follow	ving is not a symmetr	ry element in water mole	ecule?
	a)	E	b) C ₂	c) σ_v	d) i
22.	2. The point group for the ammonia molecule is				
	a)	$C_2 v$	b) C ₃ v	c) C ₂ h	d) D ₂ h
23.	Eth	ylene molecule belor	ngs to point	t group	
	a)	$C_2 v$	b) C ₃ v	c) C ₂ h	d) D ₂ h
24.	. The angle by which an object is rotated by C_3 axis is				
	a)	90 ⁰	b) 120 ⁰	c) 180 [°]	d) 60 ⁰
25.	property is absent in non-abelian group				
	a)	Inverse	b) Associative	c) Commutative	d) Closure

(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)

ARUPPUKOTTAI DEPARTMENT OF CHEMISTRY QUESTION BANK

Section B (7 mark Questions)

Unit I: FIRST LAW OF THERMODYNAMICS AND ITS APPLICATION

- 26. Give an account on
 - a) Zeroth law of thermodynamics
 - b) Joule-Thomson effect
- 27. Derive work done expression for isothermal and adiabatic process
- 28. Compare the following properties
 - a) Intensive and extensive properties
 - b) State and path function
- 29. Derive Cp Cv = R
- 30. Derive mathematical form for the first law of thermodynamics

Unit II: SECOND LAW OF THERMODYNAMICS AND ITS APPLICATIONS

- 31. Give various statements for the second law of thermodynamics
- 32. Derive Gibbs- Helmholtz equation
- 33. Show that $\Delta S = q_{rev} / T$
- 34. Derive expression for the entropy change accompanying variation of
 - a) Temperature and volume
 - b) Temperature and pressure
- 35. What is meant by chemical potential? Derive the Gibbs Duhem equation

Unit III: THERMODYNAMICS OF EQUILIBRIUM PROCESSES

- 36. Derive the relation between the equilibrium constant K_p and K_c
- 37. State the law of mass action. Derive Van't Hoff isotherm
- 38. State and explain Nernst Heat theorem
- 39. State and derive Raoul's law for relative lowering of vapour pressure
- 40. Discuss in details about the abnormal behavior of solution of electrolytes

Unit IV: PHASE EQUILIBRIA

- 41. State phase rule. Explain the various terms involved
- 42. Derive the Gibb's Phase rule

(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)

ARUPPUKOTTAI DEPARTMENT OF CHEMISTRY QUESTION BANK

- 43. Draw schematically the phase diagram for the water system and apply the Gibbs phase rule to it
- 44. Draw and discuss the phase diagram for the Sulphur system
- 45. Draw and discuss the phase diagram for the Lead Silver system

Unit V: GROUP THEORY

- 46. Discuss the following symmetry operation with suitable examples
 - a) Proper axis of rotation
 - b) Centre of symmetry
- 47. Construct Group multiplication table for H₂O molecule
- 48. Show that the symmetry elements of H_2O molecule form an abelian group
- 49. Explain in details about the properties of a group with suitable example
- 50. Discuss the point groups with suitable examples
 - a) $C_n v$ b) $C_n h$

Section C (10 mark Questions)

Unit I: FIRST LAW OF THERMODYNAMICS AND ITS APPLICATIONS

- 51. Give an account on
 - a) Kirchoff's equation
 - b) Hess's law of constant heat of summation
- 52. Derive the Joule-Thomson coefficient. Show that it is zero for an ideal ga and has a positive value for a real gas

Unit II: SECOND LAW OF THERMODYNAMICS AND ITS APPLICATIONS

- 53. Give the formation of the second law of thermodynamics on the basis of carnot cycle
- 54. Derive the followings
 - a) Maxwell relation
 - b) Thermodynamic equation of state

Unit III: THERMODYNAMICS OF EQUILIBRIUM PROCESSES

- 55. State Le-chatelier principle and give its application in the formation of ammonia
- 56. Derive the thermodynamic derivation of relationship between relative lowering of vapour pressure and osmatic pressure

Unit IV: PHASE EQUILIBRIA

(Aruppukottai Nadargal Uravinmurai Pothu Abi Viruthi Trustuku Pathiyapattathu)

ARUPPUKOTTAI DEPARTMENT OF CHEMISTRY QUESTION BANK

- 57. Draw and explain the phase diagram for the Ferric Chloride water system
- 58. Explain the following with the help of Clapeyron Clausius equation
 - a) Effect of pressure on the melting point of ice
 - b) Effect of pressure on the boiling point of water

Unit V: GROUP THEORY

- 59. Show that the symmetry elements of NH₃ molecule form non abelian group
- 60. Derive matrix representation for the following symmetry operations
 - a) Proper axis of rotation (C_n)
 - b) Plane of symmetry (σ)
 - c) Centre of symmetry (i)